If it's not what You are looking for type in the equation solver your own equation and let us solve it.
175x^2+140x+21=0
a = 175; b = 140; c = +21;
Δ = b2-4ac
Δ = 1402-4·175·21
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-70}{2*175}=\frac{-210}{350} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+70}{2*175}=\frac{-70}{350} =-1/5 $
| 8x+4(4x-3)=4(6x+4)-44 | | x+7.3=14.7 | | 2(x+1)+3(x+2)-4x-1)=12 | | x^2+14x+363=0 | | 4(x-6)+7=23 | | 5x+14=x+-2 | | -1/3c+4=7 | | 30-0.25p=0 | | -25-k=2(1+4k) | | 0.3x+0.2=0.5x-1.4 | | 12+2x=72 | | 13-8y=-27 | | 14x=22x/180 | | 1/2x+101/2=1/3x+92/3 | | (3x-2)•7=133 | | 4x+6=10-2 | | 10a^2+9a+2=0 | | 1+3/7x=11 | | 4(x-2)=5(x+1)=6 | | -1/500(x-17)(x-2)^2=0.5 | | 1/4x+2/5=3/4 | | 5u+9u-8=-92 | | -10-3x=3x-2 | | -5=3(p-2)-2 | | 6y^2-11y+7=0 | | 6r-8(r-10)=68 | | -9x=x/8-23 | | 9(10+q)+12=93 | | 9(10+q)+12=48 | | 5-3(r+3)=26 | | 7(j+12)=8j+16 | | 3s+5s=88 |